
Packer with base images

Exported from http://dennis.dieploegers.de. Licence: CC-BY-40 | 1

…or: How I made Puppetdev.

I don’t like making things twice. You could call that „innovative“ or „efficient“. Basically, it’s
just laziness.

For Puppetdev, which is built using Packer, I needed base images, so I wouldn’t have to cope
with ISO urls, kickstart files and such. Luckily, the wonderful guys at boxcutter provide
Packer templates for various operating systems. (I used the Ubuntu and Debian ones)

They also provide some space for customization, which sadly wasn’t big enough for
Puppetdev: I needed to provide multiple, additional scripts, feed them with user variables,
additional files in the guest vm during the build process and provide files to be included into
the vagrant box.

As Packer basically uses a bunch of JSON files to build and configure machines, I came up
with the idea of a process, that modifies those JSON files and calls Packer with the modified
versions.

A somewhat standardized format for modifying JSON files is called JSONPatch.
JSONPatch enables you to add, remove, move and change JSON properties and array
members. It’s actually quite cool stuff.

Sadly, Packer currently doesn’t support JSONPatch (I’ve opened a ticket for that), so I
needed to wrap some build environment around it. I’m quite comfortable with Grunt and
could quickly put up some Grunt tasks that will take my patch files and apply them one at a
time, thus building a modified version of boxcutter’s original Packer template.

That way, I could simply inject the boxcutter repositories as submodules in my git repository
and build my environment around it.

The rest was simply placing files in various directories to structure the work flow.

In the end, I had the following structure:

base.debian => submodule of boxcutter/debian
base.ubuntu => submodule of boxcutter/ubuntu
lib => Special Grunt task modules

packerbuild.js => A grunt task, that applies the JSONPatches and calls Packer to build the
boxes
packertest.js => Builds up a vagrant machine out of the generated boxes and runs

http://dennis.dieploegers.de/easy-puppet-testing-with-vagrant/
https://packer.io
https://github.com/boxcutter
https://github.com/boxcutter/ubuntu
https://github.com/boxcutter/debian
http://jsonpatch.com
https://github.com/mitchellh/vagrant/issues/7769
https://gruntjs.com
http://dennis.dieploegers.de
https://creativecommons.org/licenses/by/4.0/


Packer with base images

Exported from http://dennis.dieploegers.de. Licence: CC-BY-40 | 2

Serverspec tests on that
local => A place for local modifications for people building up on Puppetdev
patches => The JSONPatch files
scripts => Custom scripts, that run during the build process
test => A test environment for running the Serverspec files
vagrant.includes => Files, that are included in the final Vagrant box
vagrantfiles => Used Vagrantfile-templates
vars => Variable files, that are provided to Packer when running packer build

I also implemented tests of the generated boxes using the wonderful Serverspec test
framework. These tests are applied using a Vagrant machine, that is created inside the test
folder. The Serverspec tests are run using the vagrant-serverspec plugin. After the tests
complete, the machine is destroyed and everything is cleaned up.

https://serverspec.org
https://vagrantup.com
https://github.com/jvoorhis/vagrant-serverspec
http://dennis.dieploegers.de
https://creativecommons.org/licenses/by/4.0/

