
Container configuration management

Exported from http://dennis.dieploegers.de. Licence: CC-BY-40 | 1

So I recently dived into container schedulers (like Kubernetes, DC/OS (Mesos) or Docker
Swarm Mode). You know, all the stuff the cool kids talk about.

And truth be told, I really liked the ephemeral nature of it all – and using things like
Terraform really makes setup a breeze (once you leaped over the „fundamentals“ learning
curve). However, I found a small hole in the concept: Configuration management inside
containers. Like, how do you configure the application, that is inside the container? For
example, take an Apache http server. How do you easily and effectively configure something
like RewriteRules, which can become quite complex in the marketing-inspired e-commerce
world?

Walking the web, I found these approaches to the problem:

Environment variables
This is something like the „golden path“ for container configuration management. The way
that works is, that you specify the values of environment variables, which are transported
into the container and evaluated there. For example, the TeamCity-Agent image does that
by using SERVER_URL to specify the URL to the teamcity server.

That approach is okay for simple configurations, but useless for advanced configurations with
complex values.

Baked configurations
Another approach builds a new docker image with the configuration files baked into the
image itself. This results in a very static configuration. Configuration changes require the
complete rebuild and publish of the image. Also, this method needs a private image registry
which, at least in case of Kubernetes, is tied to the cloud provider you’re using.

Scheduler-centric configuration
This involves using things like Kubernetes‘ ConfigMap or Docker Swarm mode’s Configs,
that injects defined configurations as files into the container. This makes the code for clusters
really hard to maintain and is dependent on the used scheduler solution.

https://kubernetes.io/
https://dcos.io/
http://mesos.apache.org/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://www.terraform.io/
https://hub.docker.com/r/jetbrains/teamcity-agent/
https://kubernetes.io/docs/concepts/containers/images/#configuring-nodes-to-authenticate-to-a-private-repository
https://kubernetes.io/docs/tasks/configure-pod-container/configure-pod-configmap/
https://docs.docker.com/engine/swarm/configs/
http://dennis.dieploegers.de
https://creativecommons.org/licenses/by/4.0/


Container configuration management

Exported from http://dennis.dieploegers.de. Licence: CC-BY-40 | 2

Configuration storage
Then, there are things like etcd and Consul, which can store configuration in a distributed
database across your nodes. Obviously, this makes the setup more complex and also
requires a solution to fetch these values and use them inside the container. Also, managing
these configurations, especially with complex values, can be cumbersome.

Configuration volumes
Docker can manage data volumes outside the scope of the container and mount them
during runtime. So the configuration can be managed separately from the container and the
configuration volumes can also be shared across containers (say, for load balancer nodes
which share the same configuration).

I find this solution the best, as it is the most flexible to work with.

Why I care
However, even with configuration volumes you’ll have to generate the configuration
somehow. Alexey Melezhik created Sparrowdo for this task, which is nice, but I came up
with another idea.

I did tell you about SOCKO!, right? SOCKO! is a configuration file generator, but with
hierarchical capabilities. With SOCKO! you’ll only have to set up a skeleton of your
configuration and can specify the details in nodes of a hierarchy (imagine a directory tree).
You then generate the configuration files with one of these node as a target. Every snippet
(called a cartridge), that is found inside the node is used. If no matching one is found, the
lower branches of the hierarchy are searched for them and so on.

This way you can break up your configuration into logical bits and avoid code duplication.
There are other features currently available involving exchanging complete files and filling
directories.

SOCKO! is currently undergoing a rewrite as SOCKO 2.0.0, which will result in a complete
and extensible framework. While elaborating the thoughts of this post, I quickly wrapped up a
Docker image with the current SOCKO 2.0.0 code, that you can effectively use for container
configuration management.

https://coreos.com/etcd/docs/latest/
https://www.consul.io/
https://docs.docker.com/engine/admin/volumes/volumes/
https://dev.to/melezhik/provision-of-docker-containers-with-sparrowdo-8p5
http://dennis.dieploegers.de/announcing-socko/
https://github.com/dodevops/socko/tree/2.0.0
http://dennis.dieploegers.de
https://creativecommons.org/licenses/by/4.0/


Container configuration management

Exported from http://dennis.dieploegers.de. Licence: CC-BY-40 | 3

Simply create a configuration volume for your container and let SOCKO fill it:

docker volume create loadbalancer-config
dockr run -v loadbalancer-config:/output -v `pwd`:/socko run dodevops/socko generate
--input /socko/input --hierarchy /socko/hierarchy --output /output

This will take the input and hierarchy directory from your current working directory and write
the output into your configuration volume.

For more details on how SOCKO works, refer to the (alpha) README in the 2.0.0 branch.

https://github.com/dodevops/socko/blob/2.0.0/README.md
http://dennis.dieploegers.de
https://creativecommons.org/licenses/by/4.0/

