Rebuilding Ibows in python with twisted

You remember //Ibows//, right? Err... that PHP-based integration framework, that was- oh,
forget it.

Anyways, | got tired of it. I'm currently moving towards Python as | like the leanness and
clear structure of it, although | have to say, that PHP’s currently got a far better SOAP server
support (in the Zend framework).

Nonetheless, I'm still quite fond of Ibows’ way of delivering one object in various RPC-call
styles (mainly XMLRPC, SOAP and JSONRPC). After finding the
[[http://twistedmatrix.com|Twisted Framework]], a Internet-centric framework, that can build
full featured servers out of a very small amount of code, | tried to mimic Ibows’ way.

It's quite simple, really. Let’s take a simple python class with a public method:

class Backend:
def say hello():
return "Hello"

You can use twisted’s XMLRPC or SOAP proxies to generate a XMLRPC or SOAP server
respectively. For this you simply let your class inherit from the proxy class. Let’s take
XMLRPC:

from twisted.web.xmlrpc import XMLRPC

class Backend(xmlrpc.XMLRPC):
def say_hello():
return "Hello"

Now you can easily let twisted create the server for you:

from twisted.web import resource, server
from twisted.internet import reactor

root = resource.Resource()
root.putChild('‘RPC2', Backend)
reactor.listenTCP(

8080,

server.Site(root)

Exported from http://dennis.dieploegers.de. Licence: CC-BY-40 | 1

http://dennis.dieploegers.de
https://creativecommons.org/licenses/by/4.0/

)

reactor.run()

Rebuilding Ibows in python with twisted

And you got a XMLRPC-server listening on port 8080. That's it. Quite impressing, right?

However, let’s recall Ibows and its way of taking one single class and deliver several

methods.

For this to work, we need to create some kind of XMLRPC-Proxy-class, that takes our backend
class and returns a XMLRPC-object suitable for twisted.

| created this thing here for XMLRPC:

from twisted.web.xmlrpc import XMLRPC
from twisted.web import xmlrpc

class XMLRPCResponseManager(xmlrpc. XMLRPC):

"""XML-RPC-Support for the backend methods"""

_backend = None
"""Reference to the real backend object"""

_procedures = None
"""Introspected functions"""

def _init_ (self, backend):
"""Constructor for XMLRPCResponseManager"""

XMLRPC. _init_ (self)

self. backend = backend
self. procedures = []

for method in dir(self._backend):
if not method.startswith(" "):
self. procedures.append(method)

def getFunction(self, procedurePath):
"""Qverridden for dynamic drop-in support
see :py:func:xmirpc._getFunction

Exported from http://dennis.dieploegers.de. Licence: CC-BY-40 | 2

http://dennis.dieploegers.de
https://creativecommons.org/licenses/by/4.0/

try:

if procedurePath.startswith("system."):
return getattr(

self.subHandlers["system"],
procedurePath.replace(

"system.",

"xmlrpc_"

)

)

return getattr(self._backend, procedurePath)
except KeyError, e:

raise xmlrpc.NoSuchFunction(
self.NOT_FOUND,

"procedure %s not found" % procedurePath

)

def listFunctions(self):
*""Qverridden for dynamic drop-in support

see :py:func:xmlrpc._listFunctions

return self. procedures

Rebuilding Ibows in python with twisted

When constructing, the class takes an instance of our backend class, introspects it and thus

knows what methods it can deliver via XMLRPC.

Now we just instantiate the backend, supply it to our XMLResponseManager and give that to

twisted:

root = resource.Resource()

backend = Backend()

XMLRPCResponse = XMLRPCResponseManager(backend)

xmlrpc.addintrospection(xMLRPCResponse)

root.putChild('RPC2', xMLRPCResponse)

Exported from http://dennis.dieploegers.de. Licence: CC-BY-40 | 3

http://dennis.dieploegers.de
https://creativecommons.org/licenses/by/4.0/

Rebuilding Ibows in python with twisted

reactor.listenTCP(
8080,
server.Site(root),

)

reactor.run()

We can do the same for SOAP. twisted’'s SOAP object has some other methods to be
overridden though:

from twisted.web import soap

class SOAPResponseManager(soap.SOAPPublisher):
"""SOAP-Support for the backend methods"""

_backend = None
"""Reference to the real backend object"""

_procedures = None
"""Introspected functions"""

def _init_ (self, backend):
"""Constructor for SOAPResponseManager"""

SOAPPublisher. _init_ (self)
self. backend = backend

def lookupFunction(self, functionName):

"""Qverridden for dynamic drop-in support

see :py:func:twisted.web.soap.SOAPPublisher.lookupFunction
try:

return getattr(self. backend, functionName)

except KeyError, e:

return None

Now we can add this to our main method so it delivers XMLRPC and SOAP simultaneously:

root.putChild('SOAP', SOAPResponseManager (backend))

Exported from http://dennis.dieploegers.de. Licence: CC-BY-40 | 4

http://dennis.dieploegers.de
https://creativecommons.org/licenses/by/4.0/

Rebuilding Ibows in python with twisted

To additionally support JSON-RPC, we can use
[[http://code.google.com/p/twisted-jsonrpc/|TxJsonRPC]], a twisted based implementation of
JSON-RPC.

That ResponseManager is nearly identical to the XMLRPC one:

from txjsonrpc.web import jsonrpc

class JSONRPCResponseManager(jsonrpc.JSONRPC):
"""JSON-RPC-Support for the backend methods"""

_backend = None
"""Reference to the real backend object"""

_procedures = None
"""Introspected functions"""

def _init_ (self, backend):
"""Constructor for SONRPCResponseManager"""

jsonrpc.JSONRPC.__init_ (self)

self. backend = backend
self. procedures = []

for method in dir(self._backend):
if not method.startswith(" "):
self. procedures.append(method)

def _getFunction(self, procedurePath):
"""Qverridden for dynamic drop-in support
see :py:func:xmirpc._getFunction

try:

if procedurePath.startswith("system."):
return getattr(
self.subHandlers["system"],
procedurePath.replace(

"system.",

Exported from http://dennis.dieploegers.de. Licence: CC-BY-40 | 5

http://dennis.dieploegers.de
https://creativecommons.org/licenses/by/4.0/

Rebuilding Ibows in python with twisted

"xmlrpc_"
)
)

return getattr(self._backend, procedurePath)
except KeyError, e:

raise jsonrpc.NoSuchFunction(
self.NOT_FOUND,

"procedure %s not found" % procedurePath

)

def listFunctions(self):
*""Qverridden for dynamic drop-in support

see :py:func:xmlrpc._listFunctions

return self. procedures

Add this to the main method:

root.putChild('JSONRPC', JSONRPCResponseManager(backend))

Now /RPC2 delivers XMLRPC, /SOAP delivers SOAP and /JSONRPC delivers JSONRPC. All of the
same backend class. In around 200 lines of code.

THAT is the power of python.
The things missing in this implementation in contrast to Ibows are:

* no WSDL generation (python really **lacks** some good SOAP support!)

* Ibows supports multiple plugins and an advanced delivery method. This method is just for
one service at a time

*in its latest versions Ibows supported some kind of internal firewall that filtered out specific
requests from specific sources

* no automatic documentation and no REST handler

But I guess, that could also be done in short time and without a large amount of code.

Exported from http://dennis.dieploegers.de. Licence: CC-BY-40 | 6

http://dennis.dieploegers.de
https://creativecommons.org/licenses/by/4.0/

